View the Project on GitHub elements-storage/elements-sdk-python
Method | HTTP request | Description |
---|---|---|
abort_ai_dataset_model_creation | POST /api/2/ai/models/{id}/abort |
|
activate_ai_model | POST /api/2/ai/models/{id}/activate |
|
create_ai_dataset | POST /api/2/ai/datasets |
|
create_ai_dataset_model | POST /api/2/ai/models/create |
|
create_ai_metadata | POST /api/2/ai/metadata/create |
|
create_ai_model | POST /api/2/ai/models |
|
delete_ai_dataset | DELETE /api/2/ai/datasets/{id} |
|
delete_ai_model | DELETE /api/2/ai/models/{id} |
|
export_ai_dataset | POST /api/2/ai/datasets/{id}/export |
|
export_ai_model | POST /api/2/ai/models/{id}/export |
|
get_ai_dataset | GET /api/2/ai/datasets/{id} |
|
get_ai_metadata | GET /api/2/ai/metadata/{id} |
|
get_ai_model | GET /api/2/ai/models/{id} |
|
get_all_ai_datasets | GET /api/2/ai/datasets |
|
get_all_ai_metadata | GET /api/2/ai/metadata |
|
get_all_ai_models | GET /api/2/ai/models |
|
import_ai_datasets | POST /api/2/ai/datasets/import |
|
import_ai_models | POST /api/2/ai/datasets/{id}/import-models |
|
patch_ai_dataset | PATCH /api/2/ai/datasets/{id} |
|
patch_ai_model | PATCH /api/2/ai/models/{id} |
|
run_ai_model_inference | POST /api/2/ai/models/{id}/inference |
|
update_ai_dataset | PUT /api/2/ai/datasets/{id} |
|
update_ai_model | PUT /api/2/ai/models/{id} |
def abort_ai_dataset_model_creation(id)
media:access
(read) / media:roots:manage
(write)import elements_sdk
from elements_sdk.api import ai_api
from pprint import pprint
# See configuration.py for a list of all supported configuration parameters.
configuration = elements_sdk.Configuration(
host="https://elements.local:8080",
discard_unknown_keys=True,
)
configuration.client_side_validation = False
configuration.api_key['Bearer'] = 'Bearer your-api-token-here'
with elements_sdk.ApiClient(configuration) as api_client:
api_instance = ai_api.AIApi(api_client)
id = "id_example" # str | A UUID string identifying this AI Model.
# example passing only required values which don't have defaults set
try:
api_instance.abort_ai_dataset_model_creation(id)
except elements_sdk.ApiException as e:
print("Exception when calling AIApi->abort_ai_dataset_model_creation: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
id | str | A UUID string identifying this AI Model. |
void (empty response body)
[Back to top] [Back to API list] [Back to Model list] [Back to README]
def activate_ai_model(id)
media:access
(read) / media:roots:manage
(write)import elements_sdk
from elements_sdk.api import ai_api
from pprint import pprint
# See configuration.py for a list of all supported configuration parameters.
configuration = elements_sdk.Configuration(
host="https://elements.local:8080",
discard_unknown_keys=True,
)
configuration.client_side_validation = False
configuration.api_key['Bearer'] = 'Bearer your-api-token-here'
with elements_sdk.ApiClient(configuration) as api_client:
api_instance = ai_api.AIApi(api_client)
id = "id_example" # str | A UUID string identifying this AI Model.
# example passing only required values which don't have defaults set
try:
api_instance.activate_ai_model(id)
except elements_sdk.ApiException as e:
print("Exception when calling AIApi->activate_ai_model: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
id | str | A UUID string identifying this AI Model. |
void (empty response body)
[Back to top] [Back to API list] [Back to Model list] [Back to README]
def AIDatasetWithPreview create_ai_dataset(ai_dataset_with_preview_update)
None
(read) / media:roots:manage
(write)import elements_sdk
from elements_sdk.api import ai_api
from elements_sdk.model.ai_dataset_with_preview import AIDatasetWithPreview
from elements_sdk.model.ai_dataset_with_preview_update import AIDatasetWithPreviewUpdate
from pprint import pprint
# See configuration.py for a list of all supported configuration parameters.
configuration = elements_sdk.Configuration(
host="https://elements.local:8080",
discard_unknown_keys=True,
)
configuration.client_side_validation = False
configuration.api_key['Bearer'] = 'Bearer your-api-token-here'
with elements_sdk.ApiClient(configuration) as api_client:
api_instance = ai_api.AIApi(api_client)
ai_dataset_with_preview_update = AIDatasetWithPreviewUpdate(
name="name_example",
type="normal",
connection=1,
) # AIDatasetWithPreviewUpdate |
# example passing only required values which don't have defaults set
try:
api_response = api_instance.create_ai_dataset(ai_dataset_with_preview_update)
pprint(api_response)
except elements_sdk.ApiException as e:
print("Exception when calling AIApi->create_ai_dataset: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
ai_dataset_with_preview_update | AIDatasetWithPreviewUpdate |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
def AIModel create_ai_dataset_model(ai_model_training_request)
media:access
(read) / media:roots:manage
(write)import elements_sdk
from elements_sdk.api import ai_api
from elements_sdk.model.ai_model import AIModel
from elements_sdk.model.ai_model_training_request import AIModelTrainingRequest
from pprint import pprint
# See configuration.py for a list of all supported configuration parameters.
configuration = elements_sdk.Configuration(
host="https://elements.local:8080",
discard_unknown_keys=True,
)
configuration.client_side_validation = False
configuration.api_key['Bearer'] = 'Bearer your-api-token-here'
with elements_sdk.ApiClient(configuration) as api_client:
api_instance = ai_api.AIApi(api_client)
ai_model_training_request = AIModelTrainingRequest(
name="name_example",
dataset="dataset_example",
categories=[
"categories_example",
],
continue_from="continue_from_example",
parameters={
"key": "key_example",
},
) # AIModelTrainingRequest |
# example passing only required values which don't have defaults set
try:
api_response = api_instance.create_ai_dataset_model(ai_model_training_request)
pprint(api_response)
except elements_sdk.ApiException as e:
print("Exception when calling AIApi->create_ai_dataset_model: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
ai_model_training_request | AIModelTrainingRequest |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
def create_ai_metadata(ai_processing_request)
media:access
import elements_sdk
from elements_sdk.api import ai_api
from elements_sdk.model.ai_processing_request import AIProcessingRequest
from pprint import pprint
# See configuration.py for a list of all supported configuration parameters.
configuration = elements_sdk.Configuration(
host="https://elements.local:8080",
discard_unknown_keys=True,
)
configuration.client_side_validation = False
configuration.api_key['Bearer'] = 'Bearer your-api-token-here'
with elements_sdk.ApiClient(configuration) as api_client:
api_instance = ai_api.AIApi(api_client)
ai_processing_request = AIProcessingRequest(
assets=[
1,
],
directories=[
1,
],
datasets=[
"datasets_example",
],
preferred_proxy_profile=1,
) # AIProcessingRequest |
# example passing only required values which don't have defaults set
try:
api_instance.create_ai_metadata(ai_processing_request)
except elements_sdk.ApiException as e:
print("Exception when calling AIApi->create_ai_metadata: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
ai_processing_request | AIProcessingRequest |
void (empty response body)
[Back to top] [Back to API list] [Back to Model list] [Back to README]
def AIModel create_ai_model(ai_model_update)
media:access
(read) / media:roots:manage
(write)import elements_sdk
from elements_sdk.api import ai_api
from elements_sdk.model.ai_model import AIModel
from elements_sdk.model.ai_model_update import AIModelUpdate
from pprint import pprint
# See configuration.py for a list of all supported configuration parameters.
configuration = elements_sdk.Configuration(
host="https://elements.local:8080",
discard_unknown_keys=True,
)
configuration.client_side_validation = False
configuration.api_key['Bearer'] = 'Bearer your-api-token-here'
with elements_sdk.ApiClient(configuration) as api_client:
api_instance = ai_api.AIApi(api_client)
ai_model_update = AIModelUpdate(
dataset=AIDatasetReference(
id="id_example",
),
parameters={
"key": "key_example",
},
name="name_example",
training_task_id="training_task_id_example",
threshold=3.14,
epoch=-2147483648,
preprocessing_task="preprocessing_task_example",
) # AIModelUpdate |
# example passing only required values which don't have defaults set
try:
api_response = api_instance.create_ai_model(ai_model_update)
pprint(api_response)
except elements_sdk.ApiException as e:
print("Exception when calling AIApi->create_ai_model: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
ai_model_update | AIModelUpdate |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
def delete_ai_dataset(id)
None
(read) / media:roots:manage
(write)import elements_sdk
from elements_sdk.api import ai_api
from pprint import pprint
# See configuration.py for a list of all supported configuration parameters.
configuration = elements_sdk.Configuration(
host="https://elements.local:8080",
discard_unknown_keys=True,
)
configuration.client_side_validation = False
configuration.api_key['Bearer'] = 'Bearer your-api-token-here'
with elements_sdk.ApiClient(configuration) as api_client:
api_instance = ai_api.AIApi(api_client)
id = "id_example" # str | A UUID string identifying this AI Dataset.
# example passing only required values which don't have defaults set
try:
api_instance.delete_ai_dataset(id)
except elements_sdk.ApiException as e:
print("Exception when calling AIApi->delete_ai_dataset: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
id | str | A UUID string identifying this AI Dataset. |
void (empty response body)
[Back to top] [Back to API list] [Back to Model list] [Back to README]
def delete_ai_model(id)
media:access
(read) / media:roots:manage
(write)import elements_sdk
from elements_sdk.api import ai_api
from pprint import pprint
# See configuration.py for a list of all supported configuration parameters.
configuration = elements_sdk.Configuration(
host="https://elements.local:8080",
discard_unknown_keys=True,
)
configuration.client_side_validation = False
configuration.api_key['Bearer'] = 'Bearer your-api-token-here'
with elements_sdk.ApiClient(configuration) as api_client:
api_instance = ai_api.AIApi(api_client)
id = "id_example" # str | A UUID string identifying this AI Model.
# example passing only required values which don't have defaults set
try:
api_instance.delete_ai_model(id)
except elements_sdk.ApiException as e:
print("Exception when calling AIApi->delete_ai_model: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
id | str | A UUID string identifying this AI Model. |
void (empty response body)
[Back to top] [Back to API list] [Back to Model list] [Back to README]
def AIDatasetExportResponse export_ai_dataset(id, ai_dataset_export_request)
None
(read) / media:roots:manage
(write)import elements_sdk
from elements_sdk.api import ai_api
from elements_sdk.model.ai_dataset_export_response import AIDatasetExportResponse
from elements_sdk.model.ai_dataset_export_request import AIDatasetExportRequest
from pprint import pprint
# See configuration.py for a list of all supported configuration parameters.
configuration = elements_sdk.Configuration(
host="https://elements.local:8080",
discard_unknown_keys=True,
)
configuration.client_side_validation = False
configuration.api_key['Bearer'] = 'Bearer your-api-token-here'
with elements_sdk.ApiClient(configuration) as api_client:
api_instance = ai_api.AIApi(api_client)
id = "id_example" # str | A UUID string identifying this AI Dataset.
ai_dataset_export_request = AIDatasetExportRequest(
path="path_example",
) # AIDatasetExportRequest |
# example passing only required values which don't have defaults set
try:
api_response = api_instance.export_ai_dataset(id, ai_dataset_export_request)
pprint(api_response)
except elements_sdk.ApiException as e:
print("Exception when calling AIApi->export_ai_dataset: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
id | str | A UUID string identifying this AI Dataset. | |
ai_dataset_export_request | AIDatasetExportRequest |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
def AIModelExportResponse export_ai_model(id, ai_model_export_request)
media:access
(read) / media:roots:manage
(write)import elements_sdk
from elements_sdk.api import ai_api
from elements_sdk.model.ai_model_export_response import AIModelExportResponse
from elements_sdk.model.ai_model_export_request import AIModelExportRequest
from pprint import pprint
# See configuration.py for a list of all supported configuration parameters.
configuration = elements_sdk.Configuration(
host="https://elements.local:8080",
discard_unknown_keys=True,
)
configuration.client_side_validation = False
configuration.api_key['Bearer'] = 'Bearer your-api-token-here'
with elements_sdk.ApiClient(configuration) as api_client:
api_instance = ai_api.AIApi(api_client)
id = "id_example" # str | A UUID string identifying this AI Model.
ai_model_export_request = AIModelExportRequest(
path="path_example",
) # AIModelExportRequest |
# example passing only required values which don't have defaults set
try:
api_response = api_instance.export_ai_model(id, ai_model_export_request)
pprint(api_response)
except elements_sdk.ApiException as e:
print("Exception when calling AIApi->export_ai_model: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
id | str | A UUID string identifying this AI Model. | |
ai_model_export_request | AIModelExportRequest |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
def AIDatasetWithPreview get_ai_dataset(id)
None
(read) / media:roots:manage
(write)import elements_sdk
from elements_sdk.api import ai_api
from elements_sdk.model.ai_dataset_with_preview import AIDatasetWithPreview
from pprint import pprint
# See configuration.py for a list of all supported configuration parameters.
configuration = elements_sdk.Configuration(
host="https://elements.local:8080",
discard_unknown_keys=True,
)
configuration.client_side_validation = False
configuration.api_key['Bearer'] = 'Bearer your-api-token-here'
with elements_sdk.ApiClient(configuration) as api_client:
api_instance = ai_api.AIApi(api_client)
id = "id_example" # str | A UUID string identifying this AI Dataset.
# example passing only required values which don't have defaults set
try:
api_response = api_instance.get_ai_dataset(id)
pprint(api_response)
except elements_sdk.ApiException as e:
print("Exception when calling AIApi->get_ai_dataset: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
id | str | A UUID string identifying this AI Dataset. |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
def AIMetadata get_ai_metadata(id)
media:access
import elements_sdk
from elements_sdk.api import ai_api
from elements_sdk.model.ai_metadata import AIMetadata
from pprint import pprint
# See configuration.py for a list of all supported configuration parameters.
configuration = elements_sdk.Configuration(
host="https://elements.local:8080",
discard_unknown_keys=True,
)
configuration.client_side_validation = False
configuration.api_key['Bearer'] = 'Bearer your-api-token-here'
with elements_sdk.ApiClient(configuration) as api_client:
api_instance = ai_api.AIApi(api_client)
id = 1 # int | A unique integer value identifying this AI Metadata.
# example passing only required values which don't have defaults set
try:
api_response = api_instance.get_ai_metadata(id)
pprint(api_response)
except elements_sdk.ApiException as e:
print("Exception when calling AIApi->get_ai_metadata: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
id | int | A unique integer value identifying this AI Metadata. |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
def AIModel get_ai_model(id)
media:access
(read) / media:roots:manage
(write)import elements_sdk
from elements_sdk.api import ai_api
from elements_sdk.model.ai_model import AIModel
from pprint import pprint
# See configuration.py for a list of all supported configuration parameters.
configuration = elements_sdk.Configuration(
host="https://elements.local:8080",
discard_unknown_keys=True,
)
configuration.client_side_validation = False
configuration.api_key['Bearer'] = 'Bearer your-api-token-here'
with elements_sdk.ApiClient(configuration) as api_client:
api_instance = ai_api.AIApi(api_client)
id = "id_example" # str | A UUID string identifying this AI Model.
# example passing only required values which don't have defaults set
try:
api_response = api_instance.get_ai_model(id)
pprint(api_response)
except elements_sdk.ApiException as e:
print("Exception when calling AIApi->get_ai_model: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
id | str | A UUID string identifying this AI Model. |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
def [AIDatasetWithPreview] get_all_ai_datasets()
None
(read) / media:roots:manage
(write)import elements_sdk
from elements_sdk.api import ai_api
from elements_sdk.model.ai_dataset_with_preview import AIDatasetWithPreview
from pprint import pprint
# See configuration.py for a list of all supported configuration parameters.
configuration = elements_sdk.Configuration(
host="https://elements.local:8080",
discard_unknown_keys=True,
)
configuration.client_side_validation = False
configuration.api_key['Bearer'] = 'Bearer your-api-token-here'
with elements_sdk.ApiClient(configuration) as api_client:
api_instance = ai_api.AIApi(api_client)
connection = 1 # int | Filter the returned list by `connection`. (optional)
name = "name_example" # str | Filter the returned list by `name`. (optional)
ordering = "ordering_example" # str | Which field to use when ordering the results. (optional)
limit = 1 # int | Number of results to return per page. (optional)
offset = 1 # int | The initial index from which to return the results. (optional)
# example passing only required values which don't have defaults set
# and optional values
try:
api_response = api_instance.get_all_ai_datasets(connection=connection, name=name, ordering=ordering, limit=limit, offset=offset)
pprint(api_response)
except elements_sdk.ApiException as e:
print("Exception when calling AIApi->get_all_ai_datasets: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
connection | int | Filter the returned list by `connection`. | [optional] |
name | str | Filter the returned list by `name`. | [optional] |
ordering | str | Which field to use when ordering the results. | [optional] |
limit | int | Number of results to return per page. | [optional] |
offset | int | The initial index from which to return the results. | [optional] |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
def [AIMetadata] get_all_ai_metadata()
media:access
import elements_sdk
from elements_sdk.api import ai_api
from elements_sdk.model.ai_metadata import AIMetadata
from pprint import pprint
# See configuration.py for a list of all supported configuration parameters.
configuration = elements_sdk.Configuration(
host="https://elements.local:8080",
discard_unknown_keys=True,
)
configuration.client_side_validation = False
configuration.api_key['Bearer'] = 'Bearer your-api-token-here'
with elements_sdk.ApiClient(configuration) as api_client:
api_instance = ai_api.AIApi(api_client)
asset = 1 # int | Filter the returned list by `asset`. (optional)
id = 1 # int | Filter the returned list by `id`. (optional)
ordering = "ordering_example" # str | Which field to use when ordering the results. (optional)
limit = 1 # int | Number of results to return per page. (optional)
offset = 1 # int | The initial index from which to return the results. (optional)
# example passing only required values which don't have defaults set
# and optional values
try:
api_response = api_instance.get_all_ai_metadata(asset=asset, id=id, ordering=ordering, limit=limit, offset=offset)
pprint(api_response)
except elements_sdk.ApiException as e:
print("Exception when calling AIApi->get_all_ai_metadata: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
asset | int | Filter the returned list by `asset`. | [optional] |
id | int | Filter the returned list by `id`. | [optional] |
ordering | str | Which field to use when ordering the results. | [optional] |
limit | int | Number of results to return per page. | [optional] |
offset | int | The initial index from which to return the results. | [optional] |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
def [AIModel] get_all_ai_models()
media:access
(read) / media:roots:manage
(write)import elements_sdk
from elements_sdk.api import ai_api
from elements_sdk.model.ai_model import AIModel
from pprint import pprint
# See configuration.py for a list of all supported configuration parameters.
configuration = elements_sdk.Configuration(
host="https://elements.local:8080",
discard_unknown_keys=True,
)
configuration.client_side_validation = False
configuration.api_key['Bearer'] = 'Bearer your-api-token-here'
with elements_sdk.ApiClient(configuration) as api_client:
api_instance = ai_api.AIApi(api_client)
dataset = "dataset_example" # str | Filter the returned list by `dataset`. (optional)
ordering = "ordering_example" # str | Which field to use when ordering the results. (optional)
limit = 1 # int | Number of results to return per page. (optional)
offset = 1 # int | The initial index from which to return the results. (optional)
# example passing only required values which don't have defaults set
# and optional values
try:
api_response = api_instance.get_all_ai_models(dataset=dataset, ordering=ordering, limit=limit, offset=offset)
pprint(api_response)
except elements_sdk.ApiException as e:
print("Exception when calling AIApi->get_all_ai_models: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
dataset | str | Filter the returned list by `dataset`. | [optional] |
ordering | str | Which field to use when ordering the results. | [optional] |
limit | int | Number of results to return per page. | [optional] |
offset | int | The initial index from which to return the results. | [optional] |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
def ImportAIDatasetResponse import_ai_datasets(import_ai_dataset_request)
None
(read) / media:roots:manage
(write)import elements_sdk
from elements_sdk.api import ai_api
from elements_sdk.model.import_ai_dataset_response import ImportAIDatasetResponse
from elements_sdk.model.import_ai_dataset_request import ImportAIDatasetRequest
from pprint import pprint
# See configuration.py for a list of all supported configuration parameters.
configuration = elements_sdk.Configuration(
host="https://elements.local:8080",
discard_unknown_keys=True,
)
configuration.client_side_validation = False
configuration.api_key['Bearer'] = 'Bearer your-api-token-here'
with elements_sdk.ApiClient(configuration) as api_client:
api_instance = ai_api.AIApi(api_client)
import_ai_dataset_request = ImportAIDatasetRequest(
connection=1,
path="path_example",
replace=True,
rename="rename_example",
) # ImportAIDatasetRequest |
# example passing only required values which don't have defaults set
try:
api_response = api_instance.import_ai_datasets(import_ai_dataset_request)
pprint(api_response)
except elements_sdk.ApiException as e:
print("Exception when calling AIApi->import_ai_datasets: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
import_ai_dataset_request | ImportAIDatasetRequest |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
def ImportAIModelResponse import_ai_models(id, import_ai_model_request)
None
(read) / media:roots:manage
(write)import elements_sdk
from elements_sdk.api import ai_api
from elements_sdk.model.import_ai_model_request import ImportAIModelRequest
from elements_sdk.model.import_ai_model_response import ImportAIModelResponse
from pprint import pprint
# See configuration.py for a list of all supported configuration parameters.
configuration = elements_sdk.Configuration(
host="https://elements.local:8080",
discard_unknown_keys=True,
)
configuration.client_side_validation = False
configuration.api_key['Bearer'] = 'Bearer your-api-token-here'
with elements_sdk.ApiClient(configuration) as api_client:
api_instance = ai_api.AIApi(api_client)
id = "id_example" # str | A UUID string identifying this AI Dataset.
import_ai_model_request = ImportAIModelRequest(
path="path_example",
) # ImportAIModelRequest |
# example passing only required values which don't have defaults set
try:
api_response = api_instance.import_ai_models(id, import_ai_model_request)
pprint(api_response)
except elements_sdk.ApiException as e:
print("Exception when calling AIApi->import_ai_models: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
id | str | A UUID string identifying this AI Dataset. | |
import_ai_model_request | ImportAIModelRequest |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
def AIDatasetWithPreview patch_ai_dataset(id, ai_dataset_with_preview_partial_update)
None
(read) / media:roots:manage
(write)import elements_sdk
from elements_sdk.api import ai_api
from elements_sdk.model.ai_dataset_with_preview import AIDatasetWithPreview
from elements_sdk.model.ai_dataset_with_preview_partial_update import AIDatasetWithPreviewPartialUpdate
from pprint import pprint
# See configuration.py for a list of all supported configuration parameters.
configuration = elements_sdk.Configuration(
host="https://elements.local:8080",
discard_unknown_keys=True,
)
configuration.client_side_validation = False
configuration.api_key['Bearer'] = 'Bearer your-api-token-here'
with elements_sdk.ApiClient(configuration) as api_client:
api_instance = ai_api.AIApi(api_client)
id = "id_example" # str | A UUID string identifying this AI Dataset.
ai_dataset_with_preview_partial_update = AIDatasetWithPreviewPartialUpdate(
name="name_example",
type="normal",
connection=1,
) # AIDatasetWithPreviewPartialUpdate |
# example passing only required values which don't have defaults set
try:
api_response = api_instance.patch_ai_dataset(id, ai_dataset_with_preview_partial_update)
pprint(api_response)
except elements_sdk.ApiException as e:
print("Exception when calling AIApi->patch_ai_dataset: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
id | str | A UUID string identifying this AI Dataset. | |
ai_dataset_with_preview_partial_update | AIDatasetWithPreviewPartialUpdate |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
def AIModel patch_ai_model(id, ai_model_partial_update)
media:access
(read) / media:roots:manage
(write)import elements_sdk
from elements_sdk.api import ai_api
from elements_sdk.model.ai_model import AIModel
from elements_sdk.model.ai_model_partial_update import AIModelPartialUpdate
from pprint import pprint
# See configuration.py for a list of all supported configuration parameters.
configuration = elements_sdk.Configuration(
host="https://elements.local:8080",
discard_unknown_keys=True,
)
configuration.client_side_validation = False
configuration.api_key['Bearer'] = 'Bearer your-api-token-here'
with elements_sdk.ApiClient(configuration) as api_client:
api_instance = ai_api.AIApi(api_client)
id = "id_example" # str | A UUID string identifying this AI Model.
ai_model_partial_update = AIModelPartialUpdate(
dataset=AIDatasetReference(
id="id_example",
),
parameters={
"key": "key_example",
},
name="name_example",
training_task_id="training_task_id_example",
threshold=3.14,
epoch=-2147483648,
preprocessing_task="preprocessing_task_example",
) # AIModelPartialUpdate |
# example passing only required values which don't have defaults set
try:
api_response = api_instance.patch_ai_model(id, ai_model_partial_update)
pprint(api_response)
except elements_sdk.ApiException as e:
print("Exception when calling AIApi->patch_ai_model: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
id | str | A UUID string identifying this AI Model. | |
ai_model_partial_update | AIModelPartialUpdate |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
def AIModelInferenceResponse run_ai_model_inference(id, ai_model_inference_request)
media:access
(read) / media:roots:manage
(write)import elements_sdk
from elements_sdk.api import ai_api
from elements_sdk.model.ai_model_inference_request import AIModelInferenceRequest
from elements_sdk.model.ai_model_inference_response import AIModelInferenceResponse
from pprint import pprint
# See configuration.py for a list of all supported configuration parameters.
configuration = elements_sdk.Configuration(
host="https://elements.local:8080",
discard_unknown_keys=True,
)
configuration.client_side_validation = False
configuration.api_key['Bearer'] = 'Bearer your-api-token-here'
with elements_sdk.ApiClient(configuration) as api_client:
api_instance = ai_api.AIApi(api_client)
id = "id_example" # str | A UUID string identifying this AI Model.
ai_model_inference_request = AIModelInferenceRequest(
proxy=1,
frame_start=1,
frame_end=1,
frame_step=1,
skip_step=1,
combine_threshold=1,
) # AIModelInferenceRequest |
# example passing only required values which don't have defaults set
try:
api_response = api_instance.run_ai_model_inference(id, ai_model_inference_request)
pprint(api_response)
except elements_sdk.ApiException as e:
print("Exception when calling AIApi->run_ai_model_inference: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
id | str | A UUID string identifying this AI Model. | |
ai_model_inference_request | AIModelInferenceRequest |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
def AIDatasetWithPreview update_ai_dataset(id, ai_dataset_with_preview_update)
None
(read) / media:roots:manage
(write)import elements_sdk
from elements_sdk.api import ai_api
from elements_sdk.model.ai_dataset_with_preview import AIDatasetWithPreview
from elements_sdk.model.ai_dataset_with_preview_update import AIDatasetWithPreviewUpdate
from pprint import pprint
# See configuration.py for a list of all supported configuration parameters.
configuration = elements_sdk.Configuration(
host="https://elements.local:8080",
discard_unknown_keys=True,
)
configuration.client_side_validation = False
configuration.api_key['Bearer'] = 'Bearer your-api-token-here'
with elements_sdk.ApiClient(configuration) as api_client:
api_instance = ai_api.AIApi(api_client)
id = "id_example" # str | A UUID string identifying this AI Dataset.
ai_dataset_with_preview_update = AIDatasetWithPreviewUpdate(
name="name_example",
type="normal",
connection=1,
) # AIDatasetWithPreviewUpdate |
# example passing only required values which don't have defaults set
try:
api_response = api_instance.update_ai_dataset(id, ai_dataset_with_preview_update)
pprint(api_response)
except elements_sdk.ApiException as e:
print("Exception when calling AIApi->update_ai_dataset: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
id | str | A UUID string identifying this AI Dataset. | |
ai_dataset_with_preview_update | AIDatasetWithPreviewUpdate |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
def AIModel update_ai_model(id, ai_model_update)
media:access
(read) / media:roots:manage
(write)import elements_sdk
from elements_sdk.api import ai_api
from elements_sdk.model.ai_model import AIModel
from elements_sdk.model.ai_model_update import AIModelUpdate
from pprint import pprint
# See configuration.py for a list of all supported configuration parameters.
configuration = elements_sdk.Configuration(
host="https://elements.local:8080",
discard_unknown_keys=True,
)
configuration.client_side_validation = False
configuration.api_key['Bearer'] = 'Bearer your-api-token-here'
with elements_sdk.ApiClient(configuration) as api_client:
api_instance = ai_api.AIApi(api_client)
id = "id_example" # str | A UUID string identifying this AI Model.
ai_model_update = AIModelUpdate(
dataset=AIDatasetReference(
id="id_example",
),
parameters={
"key": "key_example",
},
name="name_example",
training_task_id="training_task_id_example",
threshold=3.14,
epoch=-2147483648,
preprocessing_task="preprocessing_task_example",
) # AIModelUpdate |
# example passing only required values which don't have defaults set
try:
api_response = api_instance.update_ai_model(id, ai_model_update)
pprint(api_response)
except elements_sdk.ApiException as e:
print("Exception when calling AIApi->update_ai_model: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
id | str | A UUID string identifying this AI Model. | |
ai_model_update | AIModelUpdate |
[Back to top] [Back to API list] [Back to Model list] [Back to README]